

Exploring Extreme Environments with Space Robots

Presented By: Patrick McGarey Ph.D.

Date: 9/28/17

1/2,

PhD Aerospace

UNIVERSITY OF ORONTO

۲۷,

STEM Scholar

B.Sc. Earth & Space B. Systems Design

Arizona State University

 $'O_{\partial}$

JPL Overview

- Located in Pasadena, California
- One of 10 NASA Centers
- Founded in the 1930s

JPL Firsts

- 1st U.S. satellite
- 1958 Explorer 1

- 1st Close-up images of another planet
- 1964 Mariner 4 / Mars

- 1st Fly-bys of Neptune and Uranus
- 1986, 1989 Voyager 2

- 1s t U.S. Spacecraft to the moon
- 1964 Ranger 7

- 1st orbiter at another planet
- 1971 Mariner 9 / Mars

- 1st orbiter at Jupiter
- 1979 Galileo

- 1st planetary mission
- 1962 Mariner 2 /Venus

- 1st gravity assist mission
- 1974 Mariner 10/ Venus

- 1st orbiter at Saturn
- 2004 Cassini

- 1st rover on Mars
- 1997 Pathfinder

JPL Rovers

JPL: What Lies Ahead

ASU/SESE

ASU Projects: Autokite

P.McGarey & S.Saripalli "Autokite experimental use of a low cost autonomous kite plane for aerial photography and reconnaissance" (2013) K.Johnson et al. "Rapid mapping of ultrafine fault zone topography with structure from motion" (2014)

ASU Projects: Flexible Waveguide

Cryogenic microwave signal transmission

Channel width: ~ 0.02 mm

■ Circuit thickness: ~ 0.4 mm

Reduces connection complexity

Allows for increases in detector resolution

P.McGarey et al. "A 16 channel flex circuit for cryogenic microwave signal transmission" (2014)

ASU Projects: NIR-CAM

- Near Infrared Camera
- Low-Cost, 3D-printed Parts
- Inspired by PanCam on MERs
- Spectral Bands: 450-1050 nm

A.Krishnan et al. "NIR-CAM—Development of a Near Infrared Camera" (2013)

ASU Projects: HATS & EGGS

High Altitude Turbine Survey

- Student-made balloon payload
- Floated at 36 km (120k ft) for 8 hrs
- New Mexico -> Arizona
- Study wind turbine efficiency at varying altitudes.

Exploration Geology & Geophysics Sensors

- Low-cost, 3D-printed prototype
- Camera and inertial sensors
- Self-righting design
- Impact resistant

Robots for Extremely Steep Terrain

Extremely Steep Environments

Hoover Dam, HDR Inc.

Mine Stope, AbandonedMines.n

Why Tethered Robots?

Electromechanical Tethers

- Support on steep terrain
- Power for long missions
- Data for communication

A Brief History of Tethered Robots

Dante (Wettergreen et al., 1993) (Huntsberger et al., 2007)

JPL's TRESSA

JPL's Axel & DuAxel (Nesnas et al., 2012)

MoonRaker and Tetris (Walker et al., 2015)

JPL's VolcanoBot (NASA / JPL)

TReX (McGarey et al., 2015)

Tethered Robotic eXplorer

P. McGarey et al., "System Design of a Tethered Robotic Explorer (TReX) for 3D Mapping of Steep Terrain and Harsh Environments" (2016)

Tethered Autonomy

- Detect and map the sequence and location of anchors while driving
- Backtrack along the outgoing path in order to detach from anchors

P. McGarey et al., "The Line Leading the Blind: Towards Nonvisual Localization and Mapping for Tethered Mobile Robots" (2016)

Tethered Robotic eXplorer

P. McGarey et al., "Field Deployment of the Tethered Robotic eXplorer to Map Extremely Steep Terrain" (2018)

Tethered Robotic eXplorer

P. McGarey et al., "Field Deployment of the Tethered Robotic eXplorer to Map Extremely Steep Terrain" (2018)

Axel

J. Matthews and I.Nesnas, "On the design of the Axel and DuAxel rovers for extreme terrain exploration" (2012)

Mars: RSL Exploration

Copyright 2018 California Institute of Technology. U.S. Government sponsorship acknowledged

DuAxel

P.McGarey et al., "Towards Articulated Mobility and Efficient Docking for the DuAxel Tethered Robot System" (*To Appear, IEEE Aerospace*, 2019)

DuAxel

Copyright 2018 California Institute of Technology. U.S. Government sponsorship acknowledged

- No plate tectonics
- No weathering by wind or water
- Geologically simple

Slides Courtesy L.Kerber

Why haven't we done this already?

Science Objectives

- 1. To understand how flood basalts are emplaced, whether it is from turbulent, extremely low viscosity flows, or complex flow fields and inflated flows
- 2. To understand where the mare basalts came from; plumbing the chemistry, depth, and size of the source of the magma; examining the vigor and evolution of one or more eruptions.
- 3. To determine how the regolith formation process transforms the basalts as they were formed on the Moon to the regolith-covered surface that is the source of both our returned sample collection and our remote sensing data suite.

INSTRUMENTS Microscopic Multi-Spectral Imager Regolith Μ 5-9m M Mare Lava Layers JPL ~41m Context Cameras 88-100m JPL Elemental Chemistry Cross Section Τi Potential Void Mg K (Lava Tube) Na Ca Fe ~65m AI Si University of Guelph

Image: ASU LROC Slides Courtesy L.Kerber

JPL Opportunities

jpl.nasa.gov

Contact: patrick.mcgarey@jpl.caltech.edu